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A concatenated coding scheme consisting of an inner (7, 1/2) convolutional code and
an outer (255, 223) Reed-Solomon code has been recommended by the Consultative
Committee for Space Data Systems for cross-supported space missions. The Reed-
Solomon code that was chosen makes use of the Berlekamp encoding algorithm. This
report examines some peculiarities of this code that could give rise to synchronization
problems. Suggestions are given to alleviate these problems.

l. Introduction

Concatenated coding for deep space missions was developed
in response to a need for a relatively error-free channel for
high digital data rates. Such a channel is required, for example,
when source data compression is to be used. There is a long
history of work here at JPL on such concatenated systems
both with and without data compression (Refs. 1-3).1 In
recent years it has become evident that such concatenated
coding systems will be required by many future missions both
by NASA and by foreign space agencies. For this reason, the
Consultative Committee on Space Data Systems (CCSDS),
which is formed of members from many space agencies
throughout the world, has published a set of guidelines for

1See also J. P. Odenwalder, Concatenated Reed-Solomon/Viterbi
Channel Coding for Advanced Planetary Missions: Analysis, Simula-
tions, and Tests, Submitted to the Jet Propulsion Laboratory by
Linkabit Corporation, San Diego, Calif., Contract No. 953866,
December, 1974.

concatenated coding systems. (These guidelines appear in the
CCSDS publication Telemetry Channel Coding, a draft “blue
book,” February, 1984.)

The CCSDS-recommended system consists of an inner
(7, 1/2) convolutional code and an outer (255, 233) Reed-
Solomon code with 8-bit symbols. These are the same param-
eters as are used by the Voyager project. However, a new
implementation of the Reed-Solomon code due to Berlekamp
(Ref. 4) was chosen for the standards. This code has a sym-
metric code generator polynomial that can significantly reduce
the amount of hardware needed to implement an encoder.
Berlekamp also described a bit-serial algorithm for an encoder
that further reduces its size and weight. Perlman and Lee
(Ref. 5) worked with Berlekamp to produce a flight-qualifiable
prototype for this encoder. As a result of their work, the
CCSDS has adopted the Berlekamp Reed-Solomon code as a
recommended standard. In Ref. 6 a very large scale integrated
(VLSI) implementation of the Berlekamp encoder is described.
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In order to reduce the error rate of the system still farther,
Reed-Solomon codewords will be interleaved to a depth of
I (I = 5 in most proposed applications). Interleaving occurs on
the Reed-Solomon symbol level and is performed in such a
way that the order of information symbols is preserved by the
encoding process.? A set of / interleaved codewords is called a
Reed-Solomon frame. Since the Reed-Solomon code is a block
code, codeword synchronization is required before the decod-
ing process can begin. This will be done by placing a fixed set
of symbols, called a frame synchronization marker (or simply
a frame marker), at the beginning of each Reed-Solomon
frame. An analysis of this synchronization technique can be
found in Ref. 7.

This report examines two phenomena that are peculiar to
the Reed-Solomon code that could lead to code synchroni-
zation problems if they are not treated correctly. They are
both fairly well known effects to those who work with Reed-
Solomon codes but may be unknown to others who design
systems that will use the codes.

The first effect arises from the fact that the recommended
code generator polynomial is symmetric. Consider the case in
which all the data symbols to be encoded are zeto. Before
encoding takes place, the synchronization marker is placed at
the beginning of the frame. Suppose that there are n symbols
in this marker (i.e., there are less than or equal to 8n bits in
the marker) and that n is at most equal to /. Then the encoded
frame has the form shown in Fig. 1. Notice that, since the
code generator polynomial is symmetric, the 224th column
of the frame is identical to the first. This can be easily seen by
the fact that the Reed-Solomon code is cyclic and each row is
just the cyclic rotation of the codeword formed by a constant

multiplied by the generator polynomial. In particular, the

synchronization marker appears in both the first and 224th
column. This can result in false synchronization of the frame.
In fact, this was observed in systems tests performed by the
European Space Agency (ESA).

The second effect considered in this report is that repeated
sequences of symbols of certain periods are Reed-Solomon
codewords. This effect includes the special case of the con-
stant codeword as well as (in the case of the CCSDS code)
cycles of length 3, 5, and 15. This can produce only a very
rare case of synchronization failure but it is a very useful fact
in the testing of encoders and decoders. This effect was ob-
served by C. Lahmeyer while implementing the decoders that
will be eventually used by the Voyager project. R. L. Miller
presented an explanation in an internal memorandum. This
report presents a proof of the effect that can easily be gener-
alized to other code sizes.

2See J. P. Odenwalder, op. cit.
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Il. False Synchronization of Constant
Data Sequences

As mentioned in Section I, if the data source produces a
constant symbol value, then there is a possibility of false frame
synchronization in the 224th column. Since the (255, 223)
Reed-Solomon code can correct only 16 symbo! errors, a false
synchronization in this case will cause the decoder to fail to
decode — even in the case of a noiseless channel. This condi-
tion can be reported automatically by the decoder and, in
fact, this is how ESA first noticed the problem. There are
several possible solutions to this problem.

Since the false image of the marker is separated from the
actual marker by exactly 32/ symbols, the frame syncroniza-
tion system can keep track of both images and easily distin-
guish between them. Alternatively, the marker can be taken
out of the frame and inserted, instead, between the frames. In
this way, the marker is not encoded and the false image is
never formed.

Another solution is to use “virtual zero fill.”” This is an algo-
rithm by which a shortened Reed-Solomon code (Ref. 8) is
used with the same hardware by assuming that all the missing
symbols are zeros. For implementation reasons, the missing
symbols are always assumed to be the first ones in each
codeword. Code shortening has the effect of moving the
marker from the first column of the frame to another one.
This suppresses, in most cases, the formation of a false image.
Table 1 shows the number of false images that are produced as
a function of the information block length of the shortened
code. The numbers in this table were produced by computer
simulation of the Reed-Solomon encoding process. All the
lengths not shown represent cases in which no false images are
formed. In particular, shortening by only one symbol (infor-
mation length 222) alleviates the false image problem and pro-
duces an undetectable degradation in performance in most
cases.

It should be noted that the case of constant data is rather
uninteresting. In fact, a good source encoding algorithm would
probably never let this happen. However, the above solutions
may prove useful in a case where there is no data compression.

Iil. Periodic Codewords

In this section, the case of Reed-Solomon codewords that
are made up of periodic sequences of symbols is examined.

Consider a (255, 223) Reed-Solomon codeword (not neces-
sarily the CCSDS code) that consists of a periodic sequence of
symbols. Let the smallest period of the symbols be n. Then
clearly n1225 orn € {1, 3, 5, 15, 17, 51, 85,255 }. It will be



shown that, in fact, the only possible values are 1, 3, 5, 15,
and 255. We will ignore the rather uninteresting (and trivial)
case of n = 255.

Let p(x) be a polynomial over GF(256) of the form

(255/n)-1

S

k=0

p(x) =

where n is an integral divisor of 255. The polynomial p(x) can
be considered a codeword in a (255, 223) Reed-Solomon code
if it is divisible by the code generator polynomial. Another
way of saying this is that all the roots of the generator poly-
nomial are also roots of p(x). Notice that p(x) may also be
written as

Hence the roots of p(x) are just those 255th roots of unity
that are not also nth roots of unity. Let « be a primitive 255th
root of unity. Then the roots of the CCSDS Reed-Solomon
generator polynomial, g(x), are

Q12 o113 Q118 143

and a simple check will show that none of these are either 1st,
3rd, 5th, or 15th roots of unity. This means that all the roots
of g(x) are also roots of p(x) for n € {1, 3,5, 15} and hence
p(x) is a multiple of g(x). This is just another way of saying
p(x) is a Reed-Solomon codeword. However,

a120

is a 17th root of unity so n cannot be a multiple of 17 if p(x)
is to be a codeword. Clearly, all periodic sequences of these
periods can be built linearly by combining polynomials of the
form p(x) and hence these will also be codewords. It should be
noted that the Voyager Reed-Solomon code which has roots

ol 0?03, ..., 0%

in its code generator polynomial also exhibits this property.

The phenomenon of periodic codewords does not present a
problem in frame synchronization except in the unlikely case
that the frame marker is similar to part of a periodic data se-
quence. If the frame contains some nonconstant data (such as
a time tag or frame identification code) then the problem will
never exist.

IV. Conclusions

The two effects that have been described in this report are
well understood and well known by those who routinely work
with Reed-Solomon codes. The issue of false frame marker
images is, nonetheless, an important consideration in the
design of an overall coded telemetry system. Any of the vari-
ous solutions that are cited in Section II will alleviate that
problem. The best solution, however, would probably be to
remove the frame synchronization marker from within the
Reed-Solomon code block and place it, instead, between
adjacent code blocks. In this way, not only would the false
image problem be solved, but the wasted overhead that is
created by the Reed-Solomon encoding of the frame marker
would be eliminated.
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Table 1. Number of frame marker images as a function
of information block length

Information Number of Information Number of
Block Length  Marker Images Block Length Marker Images

1 (shortest) 2 117 2

24 2 122 2

26 2 126 2

34 2 129 2

35 2 135 2

37 2 147 2

54 2 152 2

55 3 155 2

61 2 163 2

69 2 169 3

72 2 170 2

77 2 187 2

89 2 189 2

95 2 190 2

98 2 198 2

102 2 200 2

107 2 223 (full length) 2
112 3
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Fig. 1. Encoded Reed-Solomon frame with false frame marker image




